az118: (Default)
[personal profile] az118
Каждому конечному подмножеству натурального ряда
соответствует семейство его бесконечных подмножеств из
кратных sN = {sk: k∈N} и степенных  sN = {sk: k∈N}, s∈N,
рядов, их линейных комбинаций, а также их дополнений,
объединений и пересечений, -- семейство, сопряженное
с данным конечным подмножеством.

Каждому подмножеству натурального ряда соответствует
дв.дробь из отрезка [0,1]: конечному подмножеству - конечная,
бесконечному - бесконечная или периодическая. Конечные
и периодические дв.дроби суть рациональные числа.
Бесконечная дробь - иррациональное число.

например, {1,2} соотв. дв.дробь 0,11 и рац.число 1/2+1/4=3/4,
а ряду {2,4,...,2k,...} -- дв.дробь 0,01010001... и иррац.число
1/4+1/16+1/256+....=0,31..., четному ряду {2,4,6,..,2k,...} -
0,010101... и 1/4+1/16+1/64+...=1/3.


Вопрос:
существуют ли бесконечные подмножества натурального ряда,
не входящие ни в одно из сопряженных с конечными
подмножествами семейств?

October 2012

S M T W T F S
  12 3 4 5 6
7 89 1011 12 13
14 15 16 171819 20
21 22 2324 25 26 27
28 293031   

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 12th, 2025 09:20 am
Powered by Dreamwidth Studios